Characterization and Robust Classification of EEG Signal from Image RSVP Events with Independent Time-Frequency Features
نویسندگان
چکیده
UNLABELLED This paper considers the problem of automatic characterization and detection of target images in a rapid serial visual presentation (RSVP) task based on EEG data. A novel method that aims to identify single-trial event-related potentials (ERPs) in time-frequency is proposed, and a robust classifier with feature clustering is developed to better utilize the correlated ERP features. The method is applied to EEG recordings of a RSVP experiment with multiple sessions and subjects.The results show that the target image events are mainly characterized by 3 distinct patterns in the time-frequency domain, i.e., a theta band (4.3 Hz) power boosting 300-700 ms after the target image onset, an alpha band (12 Hz) power boosting 500-1000 ms after the stimulus onset, and a delta band (2 Hz) power boosting after 500 ms. The most discriminant time-frequency features are power boosting and are relatively consistent among multiple sessions and subjects.Since the original discriminant time-frequency features are highly correlated, we constructed the uncorrelated features using hierarchical clustering for better classification of target and non-target images. With feature clustering, performance (area under ROC) improved from 0.85 to 0.89 on within-session tests, and from 0.76 to 0.84 on cross-subject tests. The constructed uncorrelated features were more robust than the original discriminant features and corresponded to a number of local regions on the time-frequency plane. AVAILABILITY The data and code are available at: http://compgenomics.cbi.utsa.edu/rsvp/index.html.
منابع مشابه
طبقه بندی حمله صرعی در سیگنال EEG با استفاده از سیستم استنتاج عصبی- فازی تطابقی
Background & Aims: Epilepsy is a brain disorder in which nerve cells receive abnormal inputs. This disease can lead to abnormal behaviors, feelings and symptoms such as loss of consciousness, which is called the seizure. Identification and classification of the epileptic seizure events in electroencephalographic signal against free seizure intervals plays an important role in clinical investiga...
متن کاملA Hybrid Classifier for Characterizing Motor Unit Action Potentials in Diagnosing Neuromuscular Disorders
Background: The time and frequency features of motor unit action potentials (MUAPs) extracted from electromyographic (EMG) signal provide discriminative information for diagnosis and treatment of neuromuscular disorders. However, the results of conventional automatic diagnosis methods using MUAP features is not convincing yet.Objective: The main goal in designing a MUAP characterization system ...
متن کاملClassification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in EEG Signal
The right and left hand Motor Imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchi...
متن کاملMental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کاملComplex feature analysis of center of pressure signal for age-related subject classification
Purpose: The aim of this study was to characterize prolonged standing and its effect on postural control in elderly individuals in comparison to adults.Materials and Methods: The elderly individuals’ behavior during standing and how demanding such a task is for them, is still unknown. We recorded the center of pressure (COP) position of 12 elder and 15 young participants while they were standin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012